If it's not what You are looking for type in the equation solver your own equation and let us solve it.
r^2+4r-2=0
a = 1; b = 4; c = -2;
Δ = b2-4ac
Δ = 42-4·1·(-2)
Δ = 24
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{24}=\sqrt{4*6}=\sqrt{4}*\sqrt{6}=2\sqrt{6}$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-2\sqrt{6}}{2*1}=\frac{-4-2\sqrt{6}}{2} $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+2\sqrt{6}}{2*1}=\frac{-4+2\sqrt{6}}{2} $
| 5x-11=2×+7 | | 7x+27=-16 | | 2/3x+7/12x=1/4 | | -3,3x-7,2=0,7x+8,8 | | 2/x-3/4x=1/4 | | 9-15x=-6x+21 | | 3(x+2)-4-x)=-2(x+5) | | 3(x+1)-5x=x-15 | | 16x²+16x-45=0 | | 3(x+1)-3=5(x+2) | | 4x+2-2x=-2x+6 | | x=9/3=2(x+1)/4 | | (x/17)=6 | | 48*x-136=-70 | | 2=(x/17)-4 | | 32-x-435=179 | | -6=2/9•x | | 4-x²=(2x-4)(x+5) | | -6=2/9×x | | 1x+5=2x+7 | | 8x/3+16=6x+4 | | 17x+57=12x+47 | | -80⋅x=162 | | w²=4/121 | | 6(4+-x)+6x=24 | | 3x*2.5=6 | | (2x/5)-(x/3)=3 | | x2−8x+12=0 | | 5x^2-26x+97=0 | | 36=x+1.4x | | 2c÷7-10=19 | | 19=2c÷7-10 |